
www.manaraa.com

Secure large-scale genome-wide association studies
using homomorphic encryption
Marcelo Blatta,1, Alexander Guseva,b,1, Yuriy Polyakova,1,2, and Shafi Goldwassera,c,1,2

aDuality Technologies, Inc., Newark, NJ 07103; bDana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215; and cSimons Institute for the
Theory of Computing, University of California, Berkeley, CA 94720

Contributed by Shafi Goldwasser, February 15, 2020 (sent for review October 18, 2019; reviewed by Jung Hee Cheon and David J. Wu)

Genome-wide association studies (GWASs) seek to identify
genetic variants associated with a trait, and have been a powerful
approach for understanding complex diseases. A critical challenge
for GWASs has been the dependence on individual-level data that
typically have strict privacy requirements, creating an urgent need
for methods that preserve the individual-level privacy of partic-
ipants. Here, we present a privacy-preserving framework based
on several advances in homomorphic encryption and demon-
strate that it can perform an accurate GWAS analysis for a real
dataset of more than 25,000 individuals, keeping all individual
data encrypted and requiring no user interactions. Our extrapo-
lations show that it can evaluate GWASs of 100,000 individuals
and 500,000 single-nucleotide polymorphisms (SNPs) in 5.6 h on
a single server node (or in 11 min on 31 server nodes running
in parallel). Our performance results are more than one order of
magnitude faster than prior state-of-the-art results using secure
multiparty computation, which requires continuous user inter-
actions, with the accuracy of both solutions being similar. Our
homomorphic encryption advances can also be applied to other
domains where large-scale statistical analyses over encrypted
data are needed.

genome-wide association studies | encrypted computing |
homomorphic encryption

A association study (GWAS) evaluates one single-nucleotide
polymorphism (SNP) at a time for association to a phe-

notype or outcome. In the disease case/control setting, this is
typically performed through a goodness-of-fit test or logistic
regression, which report association odds ratios, standard errors,
and P values. The results from a GWAS have two broad down-
stream uses: First, variants that pass a statistical threshold are
reported as genome-wide significant and evaluated for functional
mechanisms; second, all variants can be integrated into polygenic
risk score analyses to predict phenotypes in held-out samples.

A critical challenge for GWASs is the dependence on
individual-level data that typically have strict privacy require-
ments, creating an urgent need for methods that preserve
the individual-level privacy of participants (1, 2). There are
two main approaches to privacy-preserving GWASs: secure
multiparty computation (MPC) and homomorphic encryption
(HE). The MPC approach typically uses a protocol invented
by Yao in the 1980s called the garbled circuit solution (3,
4). In this protocol, two clouds, each owned by a differ-
ent hospital or corresponding to two noncollaborating servers
within one hospital, hold part of the genomic data to be ana-
lyzed. The alternative approach is based on fully HE (FHE),
a novel secure encryption method developed in 2008 by Gen-
try (5), which is much less communication intensive, and is
secure even if the servers collaborate. HE allows performing
secure computations over encrypted sensitive data without ever
decrypting them.

Recent work has focused on secure MPC solutions to facili-
tate individual-level privacy-preserving GWASs (3, 6). The work
of Jagadeesh et al. (3) addressed diagnosis of monogenic dis-
eases while preserving participant privacy using MPC. Due to the

communication and computationally intensive nature of the gar-
bled circuit solution, GWASs beyond monogenic diseases were
not addressed, and the patient cohort was small. Jagadeesh et
al. estimated that, even for the monogenic example, garbled cir-
cuits would be at least 5,000 times faster than FHE. Cho et al.
(6) followed by successfully computing a GWAS by dividing data
among multiple servers and computing the GWAS via multi-
party secure protocol among the servers, subsets of which are
trusted not to collaborate against other servers, else privacy is
lost. Here, we no longer need to resort to this trust assumption.
We are successfully using HE to encrypt the genomic sequences
of study participants while enabling GWAS computations with-
out the ability to decrypt, and scaling to hundreds of thousands
of samples (Fig. 1).

We implement two common GWAS techniques—the allelic
chi-square test for case control differences and a logistic
regression approximation (LRA) with covariates—within our
HE framework. The LRA algorithm utilizes a previously pro-
posed semiparallel approach to efficiently iterate over each
genetic variant without requiring repeated likelihood maximiza-
tions (7). Our HE LRA implementation of this approach was
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Fig. 1. Schematic of the HE GWAS. First, study participants obtain a public key from the GWAS coordinator (this step is not shown in the figure, for
simplicity). Then, each of them encrypts their data using the public key, and sends the encrypted data to the Encrypted Data Bank, storing all encrypted
individual-level data from many study participants. When a specific study is initiated by the GWAS coordinator, the encrypted data for the individuals in the
study get transmitted to the HE Compute Cloud for a noninteractive secure computation. Next, the HE Compute Cloud computes the results and sends them
in encrypted form to the GWAS coordinator. Finally, the GWAS coordinator decrypts the results and routes them to one of the viewers.

independently tested in the iDASH 2018 secure genome analysis
competition (http://www.humangenomeprivacy.org/2018/) and
received the first place.* We additionally present a highly
efficient chi-square test that is faster than the LRA imple-
mentation by a factor of 40× and consumes 6× less mem-
ory at the cost of excluding covariates from the model. Our
HE framework provides postquantum security and is based on

*Our HE LRA solution shared first place with the solution by the team from the University
of California San Diego.

several advances. First, we reformulated the compute models
for both the chi-square and LRA algorithms to fully bene-
fit from ciphertext packing, enabling the parallel execution of
thousands of multiplications/additions using a single homomor-
phic multiplication/addition. Second, we introduced two types
of data encoding to minimize the number of computation-
ally expensive key switching operations, and developed several
methods for converting between the encodings homomorphi-
cally (used in the LRA solution). Third, we applied multiple
plaintext approximations for the LRA model. Fourth, we devel-
oped an efficient residue number system (RNS) variant of the
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Cheon–Kim–Kim–Song (CKKS) HE scheme (8), which naturally
supports approximate number arithmetic. Finally, we applied
more than a dozen cryptoengineering optimizations.

We apply our HE framework to a real GWAS of age-related
macular degeneration (AMD) (9) of 12,461 cases and 14,276
controls (restricted to self-reported Europeans) genotyped on
263,941 total markers with minor allele frequency of >1%. For
our gold standard, we computed association statistics in the clear
using full logistic regression on each variant with sex, age, and
age squared as covariates. We first compared the distributions of
GWAS statistics on a subset of 16,384 SNPs and 5,000 individu-
als evaluated by the same statistical test with/without HE, where
we expect essentially perfect concordance (Fig. 2 A and B). Both
the chi-square and LRA tests produced HE statistics with an R2

of 1.00 to the statistics in the clear, and a replication slope of 1.00
and 0.98, respectively, indicating negligible bias (see Materials
and Methods). We next compared the HE GWAS statistics to the
gold standard logistic regression statistics, with any differences
now arising from both the statistical assumptions and the HE
(Fig. 2 C and D). The LRA again produced highly accurate HE
statistics, with an R2 of 1.00 and a replication slope of 0.98. The
HE chi-square statistics exhibited some loss of signal relative to
the gold standard but remained highly robust, with an R2 of 0.96
(replication slope 0.99) primarily due to noise at nonsignificant
variants. Importantly, the chi-square test odds ratios remained
highly accurate and nearly unbiased (R2 = 0.95; SI Appendix,
Fig. S1). We confirmed that accuracy was high across all variants
by computing polygenic risk scores, wherein genetic risk values
are predicted for each individual as the sum of risk alleles they
carry weighted by the allelic effect size (see Materials and Meth-
ods, Fig. 2 E and F, and SI Appendix, Fig. S2). Both risk scores
were highly correlated with scores from the gold standard logistic
test (R2 > 0.99) with a slight downward bias in the absolute score
for the LRA (replication slope 0.95) (Fig. 2 E and F). Finally,
we examined individual genome-wide significant associations
reported by the original GWAS, where we again observed highly
concordant results with the gold standard using both statistical
tests (Table 1).

We next downsampled the data to investigate the run time
and scalability characteristics as a function of SNPs and sample
size (Fig. 3 and SI Appendix, Tables S1–S6). We found the LRA
computation to scale linearly in the number of markers and the
number of individuals. At the largest evaluated sample size of
n = 15,000 and M = 16,384, computation took 1.1 h, extrapo-
lated to 7.7 h for a GWAS of n = 100,000 (M = 16,384), and
extrapolated to 234 h for a GWAS of n = 100,000 and M =
500,000 run as a single job. By comparison, the chi-square test
(which requires only simple mathematical operations) was more
than an order of magnitude faster than the LRA, completing
the same analysis of n = 15,000 and M = 16,384 in 98 s (41×
faster than the LRA). This was extrapolated to 11 min for n =
100,000 (M = 16,384) or 5.6 h for a GWAS of n = 100,000 and
M = 500,000. The chi-square solution also required approxi-
mately 6× less peak RAM and thus could be run on a full-scale
cohort of n = 25,000 (M = 49,152) in 8 min within the memory
constraints available to us (SI Appendix, Table S4). Detailed run
time characteristics including encryption/decryption are avail-
able in SI Appendix, Tables S1, S2, S4, and S5. As both the LRA
algorithm and chi-square test are natively parallel over the num-
ber of SNPs, the computations can be trivially distributed to
multiple nodes, with each node working with 16,384 SNPs at a
time (see Materials and Methods). This implies that a GWAS of
n = 100,000 and M = 500,000 could be run in 11 min on 31 nodes
running in parallel.

Our HE solution for the chi-square test is faster than the
state-of-the-art MPC approach of Cho et al. (6) extrapolated to
100,000 individuals and 500,000 SNPs: 5.6 h (for HE) vs. 37 h

(for MPC association tests only, without quality control or pop-
ulation stratification analysis; Phase 3 in figure 2a of ref. 6) or
193 h (for full MPC). The accuracy of both solutions is similar.
Our LRA solution has a run time of 234 h for this scenario,
while the previously published MPC approach “did not yield
a practical runtime for a genome-wide application of logistic
regression.” Both of our solutions are fully noninteractive, pro-
duce valid odds ratios in the analyses of real data, and natively
parallelize over the number of SNPs, enabling their execution in
distributed computing cloud environments. Although we did not
implement it here, a hybrid approach where all SNPs are eval-
uated with the chi-square test and then the 5% most significant
SNPs are retested by the LRA could also be used to achieve the
same accuracy as LRA for significant associations, requiring only
17 h (excluding ciphertext repacking overhead, which would be
relatively small).

Our approach has several limitations and areas of future
work. First, unlike previous work (6), our model assumes that
encrypted data have been fully processed and does not perform
additional quality control or genetic ancestry inference, although
such methods can be easily applied preencryption. In particular,
Chen et al. (10) showed that fine-scale genetic ancestry is much
more accurately inferred by projection from external population
reference data than by principal component analysis directly on
the target samples and leads to more effective correction for
population stratification. High-quality population reference data
are available for all major populations, and the preencryption
data can be easily projected using these references to compute
ancestry covariates [requiring a simple matrix–vector product, as,
for example, implemented in the PLINK score function (11)].
Second, while the chi-square test requires no parameter tuning,
the LRA relies on a learning rate parameter (see Materials and
Methods) that may differ by study depending on size and rela-
tionship of covariates. This can be circumvented by tuning the
parameter on subsets of the data in the clear, or by compar-
ing to parameter-free solutions such as the chi-square or linear
regression results, at the cost of some additional computation.
Third, our approach does not prevent the HE Compute Cloud
from colluding with the GWAS coordinator to decrypt the orig-
inal data, which is also true for existing MPC solutions. This
problem can be addressed by adding a secret sharing protocol
or using a variant of threshold HE (12) described in the next
paragraph.

Extensions to a multiparty scenario are possible using thresh-
old HE (12), a protocol where many parties cooperatively gen-
erate a common public key using their individual secret keys
(“secret shares”). In this setting, the joint secret key corre-
sponding to the common public key is never seen by any party.
In GWASs, the same genotypes and phenotypes can be trans-
mitted from multiple participants and then combined together,
or genotypes and phenotypes can be separately transmitted
for the same individuals from different participants and then
joined together. This extension does not add substantial com-
putation overhead to our single-party HE solution (the com-
putation itself is performed the same way). Our work here is
thus a step toward enabling analyses of sensitive phenotypes
that cannot be shared between groups/institutions and individual
patient participation in research studies without risk to genomic
privacy.

Many of our HE improvements are general-purpose and can
be applied to other application domains where similar large-scale
association and regression tools are used, including phenome-
wide association studies from electronic medical record data
(13), discovery of predictors of treatment response in clini-
cal trials (14), and correlative studies of multimodal data such
as expression/microbiome activity (15). The tests developed
here can also be extended to richer machine learning models,
including decision and gradient boosted trees.

11610 | www.pnas.org/cgi/doi/10.1073/pnas.1918257117 Blatt et al.
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Fig. 2. Highly accurate HE GWAS test statistics and polygenic scores. Each plot shows a signed test statistic computed in the clear (x axis) and the cor-
responding statistic computed using an HE test (y axis). The “chisq” and “LRA” refer to the chi-square and logistic regression approximation techniques,
respectively. A and B report the same test performed in the clear versus through HE. C and D report logistic regression (glm test statistic) performed in the
clear versus the HE tests. E and F report polygenic risk scores computed from logistic regression odds ratios (glm risk score value) in the clear versus from
the HE tests (restricted to SNPs with association P < 0.01). R2, coefficient of determination of the regression; a0, intercept of the regression; a1, slope of the
regression; ρ, correlation of statistics.

Materials and Methods
HE. Our solution is based on an optimized variant of the CKKS scheme
(8), which is designed for performing approximate number arithmetic
homomorphically. We have developed a Double-Chinese Remainder The-

orem (CRT), aka RNS, variant of the original scheme. Our variant is based
on the same security assumptions as the original scheme, namely, the
Ring Learning With Errors (RLWE) problem, but relies on native 64-bit
integer arithmetic instead of multiprecision integer arithmetic for better

Blatt et al. PNAS | May 26, 2020 | vol. 117 | no. 21 | 11611
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Table 1. Association statistics from clear and HE tests at known
AMD SNPs

GLM HE LRA HE Chisq

SNP OR stat OR stat OR stat

rs10033900 T 1.09 1.97 1.08 1.91 1.06 1.44
rs943080 C 0.88 −2.94 0.89 −2.88 0.91 −2.26
rs79037040 G 0.88 −2.98 0.88 −2.91 0.89 −2.82
rs2043085 T 0.91 −2.01 0.92 −1.95 0.92 −2.13
rs2230199 C 1.41 6.83 1.38 6.67 1.40 7.10
rs8135665 T 1.12 2.04 1.12 2.03 1.12 2.29
rs114203272 T 0.62 −3.55 0.63 −3.50 0.67 −3.08
rs114212178 T 0.87 −0.70 0.87 −0.69 0.86 −0.77

Reported AMD SNPs were tested for association in a subset of n = 5,000
samples from the AMD study using gold standard logistic regression (GLM),
the HE LRA, and the HE chi-square (Chisq) test. “OR” reports the odds ratio;
for GLM and LRA, “stat” reports the test statistic; for comparison, the chi-
square test “stat” reports the square root of the statistic polarized on the
direction of the OR.

performance and parallelization. The RLWE problem is immune to all known
classic/quantum computer attacks, and is used as the basis for the HE security
standard (16).

The main differences of our Double-CRT variant compared to the origi-
nal scheme are 1) an efficient rescaling algorithm that works with residues
directly, and does not require switching to a slower positional (multipreci-
sion) number system, and 2) an efficient key switching operation previously
used for the Brakerski/Fan-Vercauteren scheme (17, 18). This key switching
algorithm was originally proposed by Bajard et al. (19) and improved by
Halevi et al. (20).

Our variant and parameter selection for the LRA implementation are
described in detail by Blatt et al. (21) and also included in SI Appendix for
completeness.

The CKKS HE scheme has also been extended to an FHE setting (22–24),
which supports ciphertext refreshing via bootstrapping when further com-
putations (e.g., after GWAS analysis) need to be performed. Although we
did not use bootstrapping in our HE solutions, as the computation circuits
for both the LRA and chi-square algorithms are known in advance, our HE
framework can be extended to this more general scenario.

Our work differs from our previous work in ref. 21 and the corresponding
iDASH analysis in multiple key ways. First, we introduce the highly efficient
chi-square test, which is 40× faster and consumes 6× less memory than the
LRA proposed in ref. 21. Second, we evaluate the performance and accuracy
of both tests using a published GWAS of 26,000 case/controls samples across
260,000 SNPs, whereas the implementation in ref. 21 was evaluated over a
toy dataset of 245 case/control samples with 10,643 SNPs (the majority of
which were rare variants) and was thus not investigated in a production-
level GWAS setting. The accuracy analysis in this manuscript additionally
includes accuracy of polygenic risk scores, which were not considered in
ref. 21. Third, we evaluate both methods across many data settings and
extrapolate performance to 100,000 individuals and 500,000 SNPs, reflecting
the scale of emerging GWASs. Fourth, we consider applications, distributed
computation, parallelization, and extensions to multiparty scenarios that
were not discussed in ref. 21.

Software Implementation. We implemented our solution in PALISADE v1.4.0
(25), an open-source lattice cryptography library. We added our own imple-
mentation for the RNS variant of the CKKS scheme to PALISADE (made
publicly available in PALISADE starting with v1.7). For loop parallelization,
we used OpenMP.

Experimental Test Bed. Experiments were performed using a server comput-
ing node with two sockets of Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40 GHz,
each with 14 cores; 500 GB of RAM was accessible for the experiments. The
node had Fedora 26 OS and g++ (GCC) 7.1.1 installed.

Note that we kept all keys and ciphertexts loaded in the memory to
show the total storage requirement for both solutions. In a practical setting,
ciphertexts could be serialized to and deserialized from persistent storage,
such as solid-state drives, as needed, for example, working with 16,384 SNPs
at a time. In this case, the memory requirements would be significantly
smaller than in our experiments, and would remain essentially constant
when the number of SNPs is increased.

Logistic Regression Approximation. Our LRA solution is based on the semi-
parallel method of Sikorska et al. (7). We applied a number of approxima-
tions to optimize the HE solution. Our approximations are described in SI
Appendix. We focused on the case/control setting and thus did not evaluate
a standard linear regression, but we note that it is a subproblem of the LRA
test that requires less computation and has been previously demonstrated
in the HE setting in the iDASH’18 competition by the University of California
San Diego team (8).

HE LRA Solution. Our HE LRA solution is described in detail in SI Appendix.
In summary, we introduced two plaintext encodings and developed several
methods for switching between the encodings. We also applied more than a
dozen cryptooptimization techniques. The only differences in the HE imple-
mentation for the AMD dataset compared to previous work (21) are in the
values of the learning rate and auxiliary scaling factors in the HE solution.

The current LRA implementation is limited to three regression covariates,
although we believe the method can model up to five covariates relatively
efficiently using the same approach (Cramer’s rule for matrix inversion) and
a greater number of covariates using an approximate technique for matrix
inversion discussed by Cheon et al. (26).

Allelic Chi-Square Test. We implemented a standard one-degree-of-freedom
allelic chi-square test for difference in major/minor allele counts between
cases and controls. Under Hardy–Weinberg equilibrium (enforced here
through genotype QC), this test is equivalent to the genotypic (2 × 3) chi-
square test (27) or the Cochran Armitage trend test used previously (6). The
chi-square HE solution is described in detail in SI Appendix.

GWAS Dataset Processing. The GWAS data were downloaded from dbGAP
(phs001039.v1.p1) and restricted to all self-identified European samples and
QC passing SNPs with minor allele frequency of >1%. The gold standard
logistic regression was run using sex, age, and age squared as covariates
using the standard glm function in R. The LRA analyses were carried out with
the same set of covariates, and the chi-square test analyses were carried out
with no covariates.

Accuracy Metrics. We evaluated test accuracy using two metrics: R2, com-
puted as the coefficient of determination from a regression of the estimated

Fig. 3. Linear run time scaling and extrapolation to 100,000 individuals. Run time measured from down-sampling individuals in an analysis of 16,384 SNPs,
extrapolated to M = 500,000 SNPs and the given sample size (x axis) using a linear fit. Measured results are shown with points, extrapolated fit with dashed
line. (A) HE chi-square test; (B) HE LRA test.
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test statistic on the ground truth, and replication slope, computed as the
slope of the regression. The R2 reflects how much variance in the ground
truth statistic is explained by the estimate. The replication slope reflects the
scaling factor on the effect sizes imposed by the estimation. When the esti-
mated effect size distribution is linear, the squared replication slope of the
test statistics can be thought of as the effective decrease in sample size due
to estimation noise (28).

Polygenic Risk Score. We implemented a simple threshold-based polygenic
risk score to avoid parameter tuning. After computing the GWAS statistics,
variants passing a given P value threshold were retained (P < 0.01 or P <
5e-8) and used to predict the genetic value of each individual in the study.
The prediction for each sample was the sum across all SNPs of the number
of major alleles the individual carries times the major allelic odds ratio of
that SNP. We did not account for linkage disequilibrium across markers (i.e.,
through pruning), because we were only interested in the relative accuracy
of the genetic value computed from different tests.

Run Time Extrapolation. For the chi-square test, run time was computed for
all n = 25,000 samples in increasing blocks of M = 16,384 SNPs until maximum
RAM capacity was reached at M = 49,152, as well as for a single block of
M = 16,384 SNPs from n = 5,000 to n = 25,000 in steps of 5,000 (SI Appendix,
Table S4). For the LRA, which required substantially more RAM, run time
was computed for n = 5,000 samples in increasing blocks of M = 16,384 SNPs
until maximum RAM capacity was reached at M = 65,536, as well as a sin-
gle block of M = 16,384 from n = 2,500 to n = 15,000 in steps of 2,500.
A linear trend line was then fit to the subsampled data to extrapolate to
larger SNP/sample sizes; the linear fit was highly accurate, producing an
R2 > 0.98 for both tests (SI Appendix, Tables S3 and S6). Linear extrapolation
was similarly used in previous published work (6).

Memory Extrapolation. We measured peak RAM usage (i.e., the total
storage requirement) after downsampling SNPs at a fixed sample size

(SI Appendix, Table S7), or individuals fixed at 16,384 SNPs (SI Appendix,
Table S8). Extrapolation was then calculated from downsampled individu-
als using a linear fit, which was highly accurate (R2 > 0.99) (SI Appendix,
Table S8). We note that computations involving individuals that cannot be
fully stored in memory (e.g., millions) can be computed in large individual
subsets and merged by metaanalysis with negligible loss of accuracy, as is
typically done for large-scale GWASs involving multiple consortia.

Distributed Computation and Parallelization. Both LRA and chi-square test
algorithms perform computations for each SNP independently. Our imple-
mentations use ciphertext packing and hence perform GWAS computations
for batches of 16,384 and 4,096 SNPs at a time for LRA and chi-square test,
respectively. This implies that the GWAS computation for a large number
of SNPs can be trivially distributed to multiple nodes by sending differ-
ent batches to different nodes in parallel. For instance, we can securely
evaluate a GWAS of n = 100,000 and M = 500,000 using the chi-square
test in 11 min on 31 nodes if batches of 16,384 SNPs are sent to differ-
ent nodes in parallel, vs. 5.6 h when a single node is used for the whole
computation.

Data Availability. Our analysis is based on the phs001039.v1.p1 dataset avail-
able for download in dbGAP. The pseudocode for chi-square test and LRA
HE protocols is listed in SI Appendix, algorithms 2 and 5, respectively. The
implementation of all cryptographic capabilities used in our work, including
our optimized CKKS variant, is publicly available for download in PALISADE
v1.7.4 and later (25). The implementation of the GWAS protocols developed
in this work is publicly available (29).
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